The Wearable Artificial Kidney: Is It The Future Of Dialysis?

Thomas A. Golper, MD, FACP, FASN
Vanderbilt University Medical Center
Nashville, TN

thomas.golper@vanderbilt.edu

Potential Conflicts of Interest: Consultant or speaker for Baxter, Fresenius, DaVita and advisor to Victor Gura
Outline

- Why create a wearable artificial kidney (WAK)?
- Is it feasible?
- Some results
- Strategies for the future
Outline

• Why create a wearable artificial kidney (WAK)?
• Is it feasible?
• Some results
• Strategies for the future
Cumulative Survival In Different HD Treatment Strategies

Kjellstrand et al. NDT 23: 3283, 2008

USRDS 2005

pooled from five centers in the US, Italy, France and the UK.
Is this Improved outcome from

- Increased frequency
- Increased dose
- Pure patient selection
- Unknown variables
- Combinations of above
Frequent Dialysis: What Dose?

<table>
<thead>
<tr>
<th></th>
<th>Intermittent Dialysis</th>
<th>Daily Dialysis</th>
<th>Wearable Artificial Kidney</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sessions Per Week</td>
<td>3X</td>
<td>6-7</td>
<td>Continuous</td>
</tr>
<tr>
<td>Hours Per Session</td>
<td>3-4</td>
<td>2-4</td>
<td>Continuous</td>
</tr>
<tr>
<td>Weekly Hours of Dialysis</td>
<td>9-12</td>
<td>14-28</td>
<td>168</td>
</tr>
<tr>
<td>Creatinine Clearance</td>
<td>10-12 ml/min</td>
<td>20-28 ml min</td>
<td>40 ml min</td>
</tr>
</tbody>
</table>
Longer and more frequent dialysis is unfeasible for most patients

- Nowhere to do it
 - Society cannot keep building dialysis units
- Nobody to do it
 - There are not enough nurses and technicians
 - Not enough home helpers
- Payers unable to increase reimbursement
- Patients want freedom to have a life beyond being attached to a big machine for hours on end
79 year old in-center HD female to me

“This disease is SO consuming.”
Daily Home Dialysis: The Potential for Improved Quality and Length of Life

Advantages for Patients

- Improved volume control
- No Na retention
- Less hypertension
- No hyperkalemia
- No hyperphosphatemia
- No acidosis
- Improved nutrition
- Improved sleep

- Reduce need for phosphate binders
- Decrease need for BP drugs
- Decreased expected morbidity and mortality from bone disease, anemia, cardiovascular disease and stroke
- Decreased transportation needs
Advantages for Payers

- Less cost for
 - ESRD program
 - Hospitalizations
 - Certain medications
Advantages for Physicians

• Less ill patients means less emergencies
• More new patients seen
• Return patients less complicated so day less stressful
• More job satisfaction
Advantages for Dialysis Provider

• Significant reduction in:
 – physical plants
 – construction costs
 – nursing and technical staff
 – drug consumption
Outline

- Why create a wearable artificial kidney (WAK)?
- Is it feasible?
- Some results
- Strategies for the future
We can miniaturize anything and everything......

clocks

computers
We can miniaturize anything and everything……
dialysis machines
The Wearable Artificial Kidney (WAK)
Blood Circuit
US patent 6,960,179

Color Code
Red: Blood from patient
Blue: Blood to patient
Gray: Electronics
White: Heparin
The Wearable Artificial Kidney V1.2

Dialysate Circuit

US Patent No. 6,960,179 and other patents pending.

Blood-leak/bubble detector, pump power-up and alarm/shutoff system

Battery

Dialysate regenerating system

WAK pump

Blood-leak-detecting probe

Dialyzer

Tubing color code:
Black: Electrolyte supplement
Yellow: Dialysate to regenerating system
Brown: Bicarbonate
Green: Dialysate from regenerating system

Electronics/cables are shown in gray

Pump/bag color code:
Black: Electrolyte
Yellow: Waste (UF)
Brown: Bicarbonate
The Wearable Artificial Kidney V1.2
US Patent No. 6,960,179 and other patents pending.

Blood-leak/bubble detector, pump power-up and alarm/shutoff system

Blood-leak-detecting probe
Bubble-detecting probe

External Flowmeter
Measures blood and dialysate flow rates

WAK pump

Blood to patient

Dialysate to regenerating system

Battery

Dialysate regenerating system

Pump/bag color code:
- White: Heparin
- Black: Electrolyte
- Yellow: Waste (UF)
- Brown: Bicarbonate

Tubing color code:
- Red: Blood from patient
- Blue: Blood to patient
- White: Heparin
- Black: Electrolyte supplement
- Yellow: Dialysate to regenerating system
- Brown: Bicarbonate
- Green: Dialysate from regenerating system

Electronics/cables are shown in gray.
The Wearable Artificial Kidney V1.2
US Patent No. 6,960,179 and other patents pending.
WAK version 2.0 model
Simple user interface
Standard dialyzer
Bicarb, acetate & heparin
Integrated electronics
Integrated safety systems
Conformable sorbent cartridges
Custom fluid pump
Waste bag
Hot-swap battery
Outline

- Why create a wearable artificial kidney (WAK)?
- Is it feasible?
- Some results
- Strategies for the future
The Wearable Artificial Kidney
8 hours of dialysis, in anesthetized uremic pigs
Gura et al CJASN 4:1441 2009

<table>
<thead>
<tr>
<th>Results</th>
<th>V 1.0</th>
<th>V 1.1</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effective urea clearance</td>
<td>24.1±2.4</td>
<td>39.8±2.7</td>
<td>mL/min</td>
</tr>
<tr>
<td>Effective creatinine cl</td>
<td>25.1±2.3</td>
<td>40.9±2.3</td>
<td>mL/min</td>
</tr>
<tr>
<td>Total urea removal</td>
<td>12.4±2.8</td>
<td>15.3±4.4</td>
<td>G</td>
</tr>
<tr>
<td>Total creatinine removal</td>
<td>0.9±0.2</td>
<td>1.7±0.2</td>
<td>G</td>
</tr>
<tr>
<td>Total phosphate removal</td>
<td>0.8±0.2</td>
<td>1.83±0.7</td>
<td>G</td>
</tr>
<tr>
<td>Total potassium removal</td>
<td>80.5±19.5</td>
<td>150.5±16.7</td>
<td>mmol</td>
</tr>
<tr>
<td>Extrapolated standard Kt/V</td>
<td>6.9±1.9</td>
<td>7.7±0.5</td>
<td></td>
</tr>
</tbody>
</table>
WAK London Human Trials

- 4 to 8 hours, averaging 6.4 hours
- UF removed 4.2 kg
- Unchanged EC:TB water ratio by bioimpedance
- Urea removal = 10.4 ± 5.8 g. Clearance = 22.7 ± 5.2 ml/min
- Kt/V hourly = 0.03. Weekly (extrapolated) 5.04
- Creatinine removed 870 ± 492 mg. Clearance = 20.7 ± 4.8 ml/min
- Phosphorus Removed = 445.2 ± 325.9 mg
- β2M Removed = 99.8 ± 63.1 (mg). Clearance = 11.3 ± 2.3 (ml/min)
- Stable BP and HR
- No hemolysis
<table>
<thead>
<tr>
<th>Question</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Did you suffer from shortness of breath during treatment?</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>Did you suffer from palpitations during treatment?</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>Did you suffer from chest pain during treatment?</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>Did you suffer from any other pain during treatment?</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>Did you suffer from itching during treatment?</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>Did you suffer from nausea during treatment?</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>Did you suffer from vomiting during treatment?</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>Did you suffer from diarrhea during treatment?</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>Did you suffer from headaches during treatment?</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>Did you suffer from cramps during treatment?</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>Did you walk treated with the Wearable Artificial Kidney?</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>Would you advise other patients to try this device?</td>
<td>8</td>
<td>0</td>
</tr>
</tbody>
</table>
Mother and daughter, Vicenza Italy UF Trials. KI 73:497, 2008
Can Subjects Sleep with the WAK ON?

WAK London Human Trials
WAK London Human Trials
Outline

• Why create a wearable artificial kidney (WAK)?
• Is it feasible?
• Some results
• Strategies for the future
Central Venous Catheters For In-Center HD

- Rare exit site infections
- Luminal infections dominate
- Opened in dialysis units two ports thrice weekly for 6 openings per week
- Closed in dialysis unit two ports thrice weekly for 6 closings per week
- 12 manipulations/week in a dialysis unit
Central Venous Catheters
For Daily Home HD

- Now have six treatments per week, two ports, an opening and closing for each treatment for 24 manipulations/week
- At least all done at home
Central Venous Catheters For WAK

- One opening and one closing per week for a total of two manipulations/week
- All manipulations performed in surgical center environment
Spectrum of ESRD Illness For Patients On Dialysis

- Hospitalized ill
- Home inactive
- Home infirmed
- Home Some activity
- Home active
Spectrum of ESRD Illness For Patients On Dialysis

Hospitalized ill

Home inactive

Home infirmed

Home Some activity

Home active
The Wearable Artificial Kidney: Is It The Future Of Dialysis?

YES

thomas.golper@vanderbilt.edu